- namespace: Rindow\NeuralNetworks\Optimizer
- classname: RMSprop
RMSprop optimizer. Maintain a moving (discounted) average of the square of gradients.
Methods
constructor
$builer->RMSprop(
float $lr=0.001,
float $rho=0.9,
float $decay=0.0,
float $epsilon=null,
)
You can create a Adam optimizer instances with the Optimizer Builder.
Options
- lr: learning rate.
- float >= 0
- default is 0.001
- rho: Discounting factor for the history/coming gradient.
- float >= 0
- default is 0.9
- decay: The exponential decay rate.
- float >= 0
- default is 0.0
- epsilon: “epsilon hat” in the Kingma and Ba paper
- float >= 0
- default is epsilon defined in backend(see backend).
Examples
$model->compile(
optimizer:$nn->optimizers()->RMSprop(
lr: 0.001,
)
);