- namespace: Rindow\NeuralNetworks\Optimizer
- classname: Adam
Adam optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments.
Methods
constructor
$builer->Adam(
float $lr=0.001,
float $beta1=0.9,
float $beta2=0.999,
float $epsilon=null,
)
You can create a Adam optimizer instances with the Optimizer Builder.
Options
- lr: learning rate.
- float >= 0
- default is 0.001
- beta1: The exponential decay rate for the 1st moment estimates.
- float >= 0
- default is 0.9
- beta2: The exponential decay rate for the 2nd moment estimates.
- float >= 0
- default is 0.999
- epsilon: “epsilon hat” in the Kingma and Ba paper
- float >= 0
- default is epsilon defined in backend(see backend).
Examples
$model->compile(
optimizer:$nn->optimizers()->Adam(
lr: 0.001,
beta1: 0.9,
beta2: 0.999,
epsilon: 1e-7,
)
);