- namespace: Rindow\NeuralNetworks\Layer
- classname: SimpleRNN
Fully-connected RNN where the output is to be fed back to input.
Methods
constructor
$builer->SimpleRNN(
int $units,
array $input_shape=null,
string|object $activation='tanh',
bool $use_bias=true,
string|callable $kernel_initializer='glorot_uniform',
string|callable $recurrent_initializer='orthogonal',
string|callable $bias_initializer='zeros',
bool $return_sequences=false,
bool $return_state=false,
bool $go_backwards=false,
bool $stateful=false,
string $name=null,
)
You can create a SimpleRNN layer instances with the Layer Builder.
Arguments
- units: Dimensionality of the output space.
Options
- input_shape: Tell the first layer the shape of the input data. In input_shape, the batch dimension is not included.
- activation: Activation function. Default is ‘tanh’.
- use_bias: Use bias. Default is true.
- kernel_initializer: Default is ‘glorot_uniform’.
- recurrent_initializer: Default is ‘orthogonal’.
- bias_initializer: Default is ‘zeros’.
- return_sequences: Whether to return the last output in the output sequence, or the full sequence. Default is false.
- return_state: Whether to return the last state in addition to the output. Default is false.
- go_backwards: If True, process the input sequence backwards and return the reversed sequence. Default is false.
- stateful: N/A.
forward
public function forward(
NDArray $inputs,
Variable|bool $training,
array $initialStates=null,
array $options=null
)
Arguments
- inputs: A 3D NDArray with shape [batch, timesteps, feature].
- training: When training, it is true.
- initialStates: List of initial state. Number of the state is one. Shape of the state is [batch, units]. When it have no state, give a null.
- options: N/A
Input shape
3D array of shape.
[batchsize, timesteps, features]
Output shape
If “return_state” is true then it returns the list of [outputs, states]. If “return_state” is false then it returns just outputs.
If “return_sequences” is false then the shape of outputs is 2D [batchsize, units]. If “return_sequences” is true then the shape of outputs is 3D [batchsize, timesteps, units].
States shape
The states is list of state. Shape of it is 2D [batchsize, units].
$rnn = $builder->layers()->SimpleRNN($units=256,
return_sequences:true,return_state:true);
....
$inputs = $mo->ones([64,32,128]);
$initialStates = [$mo->ones([64,256])];
....
[$outputs,$states] = $rnn->forward($inputs,true,$initialStates);
# $outputs->shape() : [64,32,256]
# $states[0]->shape() : [64,256]
Example of usage
class Foo extends AbstractModel
{
public function __construct($backend,$builder)
{
...
$this->rnn = $builder->layers()->SimpleRNN($units=256,
return_sequences:xtrue,return_state:true);
....
}
protected function call(.....)
{
...
[$outputs,$states] = $this->rnn->forward($inputs,$training,$initialStates);
...
}
}