- namespace: Rindow\NeuralNetworks\Gradient\Func
- classname: Increment
Add a constant value to an array. The following formula returns the result: alpha and beta are scalar values.
- Y = alpha*X + beta
Methods
increment
$g->increment(
Variable|NDArray $x,
Variable|Scalar $beta,
?Variable|Scalar $alpha=null,
) : Variable
Create and execute the function in the builder method
Arguments
- x: The arguments is Variable or NDArray.
- beta: The increment.
- alpha: Scale each element of the array by a multiplier. If omitted, it’s treated as 1.
use Rindow\Math\Matrix\MatrixOperator;
use Rindow\NeuralNetworks\Builder\NeuralNetworks;
$mo = new MatrixOperator();
$nn = new NeuralNetworks($mo);
$g = $nn->gradient();
$x = $g->Variable([[1,2],[3,4]]);
$y = $nn->with($tape=$g->GradientTape(),function() use ($g,$x) {
return $g->increment($x,10);
});
echo $mo->toString($y)."\n";