- namespace: Rindow\NeuralNetworks\Losses
- classname: Huber
Huber loss function.
For each value x in x = trues - predicts, d = delta Specify the delta value and use the two expressions properly
-
loss = 0.5 * x^2 if x <= d -
loss = 0.5 * d^2 + d * ( x - d) if x > d
Methods
constructor
$builer->Huber(
float $delta=1.0
)
You can create a BinaryCrossEntropy loss function instances with the Losses Builder.
Examples
$model->compile(
loss:$nn->losses()->Huber(delta:0.8),
);