- namespace: Rindow\NeuralNetworks\Data\Dataset
- classname: CSVDataset
CSV data preprocessor.
Read the CSV file under the specified path and convert it to NDArray through the created filter.
Methods
constructor
$builer->CSVDataset(
string $path,
string $pattern=null,
int $batch_size=32,
bool $skip_header=false,
DatasetFilter $filter=null,
object $crawler=null,
bool $shuffle=false,
int $length=0,
string $delimiter=',',
string $enclosure='"',
string $escape='\\',
)
You can create a CSVDataset instances with the Data Builder.
Arguments
- path: Top directory of csv files.
- pattern: File name pattern. Specifies the regular expression for preg_match.
- batch_size: Batch size
- filter: Specifies the filter for the dataset. Filter will be described later.
- crawler: Specifies an instance of the service that crawls the directory tree. By default it uses its own Dir class.
- shuffle: Whether to randomize the order of the data in the batch. (Note that it is not random for the entire data)
- length: Limit maximum line length
- delimiter: The optional delimiter parameter sets the field delimiter (one character only).
- enclosure: The optional enclosure parameter sets the field enclosure character (one character only).
- escape: The optional escape parameter sets the escape character (at most one character). An empty string (“”) disables the proprietary escape mechanism.
Examples
use Rindow\NeuralNetworks\Builder\NeuralNetworks;
$nn = new NeuralNetworks($mo);
$filter = new MyFilter();
$csv = $nn->data()->CSVDataset('/datapath/csvdatadir',['filter'=>$filter]);
foreach ($csv as $batchdataset) {
[$train,$label] = $batchdataset;
foreach ($train as $key => $value) {
$inputs = $value;
$trues = $label[$key];
//....... some processing
}
}
setFilter
public function setFilter(DatasetFilter $filter) : void
Set a filter to convert CSV row data to NDArray.
In order to use CSVDataset, it is necessary to specify a filter with DatasetFilter interface by the option of the constructor or by the setFilter method.
Arguments
- filter: Instance of conversion filter.
batchSize
public function batchSize() : int
Dataset batch size.
datasetSize
public function datasetSize() : int
Total size of the dataset.
In the initial state, the file is not read, so the correct size cannot be returned. You can get the size after reading to the end of the dataset
count
public function count() : int
Number of batch steps.
In the initial state, the file is not read, so the correct size cannot be returned. You can get the size after reading to the end of the dataset
How to make a filter
It is loaded by the fgetcsv function and passed a PHP native Array organized by batch size. You need to implement a filter that converts this to an NDArray.
Create a class that implements DatasetFilter and implement the translate method.
translate
public function translate(iterable $inputs, iterable $tests=null, $options=null) : array
Arguments
- inputs: Array of strings read by fgetcsv for the number of rows of the specified batch size.
- tests: N/A
- options: N/A
Output set
- inputs: Data expected to be used for training input
- tests: Data expected to be used for correct labels
Filter Example
An example of a filter that returns the last column of csv as the correct label
use Rindow\NeuralNetworks\Data\Dataset\DatasetFilter;
class TestFilter implements DatasetFilter
{
public function __construct($mo = null)
{
$this->mo = $mo;
}
public function translate(
iterable $inputs, iterable $tests=null, $options=null) : array
{
$batchSize= count($inputs);
$cols = count($inputs[0])-1;
$inputsNDArray = $this->mo->la()->alloc([$batchSize,$cols]);
$testsNDArray = $this->mo->la()->alloc([$batchSize,1]);
foreach ($inputs as $i => $row) {
$testsNDArray[$i][0] = (float)array_pop($row);
for($j=0;$j<$cols;$j++) {
$inputsNDArray[$i][$j] = (float)$row[$j];
}
}
return [$inputsNDArray,$testsNDArray];
}
}