- namespace: Rindow\NeuralNetworks\Layer
- classname: BatchNormalization
Batch Normalization layer.
Normalize the previous activation function layer at each batch
Methods
constructor
$builer->BatchNormalization(
int $axis=-1,
float $momentum=0.99,,
float $epsilon=0.001,
bool $center=true,
bool $scale=true,
string|callable $beta_initializer='zeros',
string|callable $gamma_initializer='ones',
string|callable $moving_mean_initializer='zeros',
string|callable $moving_variance_initializer='ones',
string $name=null,
)
You can create a BatchNormalization layer instances with the Layer Builder.
Options
- momentum: Momentum for the moving average.
- default is 0.99
- epsilon: Small float added to variance to avoid dividing by zero.
- default is 0.001
- beta_initializer: name of initializer for the beta weight.
- default is zeros
- gamma_initializer: name of initializer for the gamma weight.
- default is ones
- moving_mean_initializer: name of initializer for the moving mean.
- default is zeros
- moving_variance_initializer: name of initializer for the moving variance.
- default is ones
Examples
$model->add($nn->layers()->BatchNormalization(
momentum:0.99,
epsilon:0.001,
beta_initializer:'zeros',
gamma_initializer:'ones',
moving_mean_initializer:'zeros',
moving_variance_initializer:'ones',
));